
Scaling Up Distance-generalized Core Decomposition
Qiangqiang Dai

Beijing Institute of Technology

Beijing, China

qiangd66@gmail.com

Rong-Hua Li

Beijing Institute of Technology

Beijing, China

lironghuascut@gmail.com

Lu Qin

University of Technology Sydney

Sydney, Australia

Lu.Qin@uts.edu.au

Guoren Wang

Beijing Institute of Technology

Beijing, China

wanggrbit@126.com

Weihua Yang

Taiyuan University of Technology

Taiyuan, China

yangweihua@tyut.edu.cn

Zhiwei Zhang and Ye Yuan

Beijing Institute of Technology

Beijing, China

cszwzhang@outlook.com

yuanye@mail.neu.edu.cn

ABSTRACT
Core decomposition is a fundamental operator in network analysis.

In this paper, we study a problem of computing distance-generalized

core decomposition on a network. A distance-generalized core, also

termed (𝑘, ℎ)-core, is a maximal subgraph in which every vertex

has at least 𝑘 other vertices at distance no larger than ℎ. The state-

of-the-art algorithm for solving this problem is based on a peeling

technique which iteratively removes the vertex (denoted by 𝑣) from

the graph that has the smallest ℎ-hop degree. The ℎ-hop degree of

a vertex 𝑣 denotes the number of other vertices that are reachable

from 𝑣 within ℎ hops. Such a peeling algorithm, however, needs

to frequently recompute the ℎ-hop degrees of 𝑣 ’s neighbors after

deleting 𝑣 , which is typically very costly for a large ℎ. To overcome

this limitation, we propose an efficient peeling algorithm based on

a novel ℎ-hop degree updating technique. Instead of recomputing

the ℎ-hop degrees, our algorithm can dynamically maintain the

ℎ-hop degrees for all vertices via exploring a very small subgraph,

after peeling a vertex. We show that such an ℎ-hop degree updating

procedure can be efficiently implemented by an elegant bitmap
technique. In addition, we also propose a sampling-based algorithm

and a parallelization technique to further improve the efficiency.

Finally, we conduct extensive experiments on 12 real-world graphs

to evaluate our algorithms. The results show that, when ℎ ≥ 3, our

exact and sampling-based algorithms can achieve up to 10× and

100× speedup over the state-of-the-art algorithm, respectively.

CCS CONCEPTS
• Theory of computation → Graph algorithms analysis.

KEYWORDS
cohesive subgraph, core decomposition, distance-generalized core

decomposition

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CIKM ’21, November 1–5, 2021, Virtual Event, QLD, Australia
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8446-9/21/11. . . $15.00

https://doi.org/10.1145/3459637.3482294

ACM Reference Format:
Qiangqiang Dai, Rong-Hua Li, Lu Qin, GuorenWang, Weihua Yang, and Zhi-

wei Zhang and Ye Yuan. 2021. Scaling Up Distance-generalized Core De-

composition. In Proceedings of the 30th ACM International Conference on
Information and Knowledge Management (CIKM ’21), November 1–5, 2021,
Virtual Event, QLD, Australia. ACM, New York, NY, USA, 10 pages. https:

//doi.org/10.1145/3459637.3482294

1 INTRODUCTION
Many real-world networks such as social networks, biological net-

works, and collaboration networks often contain cohesive subgraph

structures. Finding cohesive subgraphs from a network is a fun-

damental problem in networks analysis which has attracted much

attention in recent years [5, 7, 8, 10, 32]. A variety of cohesive sub-

graph models have been proposed, such as maximal clique [11, 12],

𝑘-plex [8, 29], 𝑘-truss [13, 20, 32], and 𝑘-core [28]. Among of them,

𝑘-core is the most appealing model, because it can be computed

in linear time [6]. However, computing cohesive subgraphs based

on the other models is often very costly. As a consequence, the

𝑘-core model has been widely used in many application domains,

including community discovery [14, 19], network topology analysis

[30], protein complex modeling [2, 4], and network visualization

[3] [34].

The 𝑘-core of a graph 𝐺 is defined as a maximal subgraph in

which every vertex has a degree at least 𝑘 within that subgraph. Al-

though it is commonly used in practice, the 𝑘-core model sometimes

cannot detect cohesive subgraphs. For example, let us consider a

graph shown in Fig. 1. Intuitively, the subgraph induced by the

vertices {𝑣8, 𝑣9, · · · , 𝑣14} is a cohesive subgraph. Such a cohesive

subgraph, however, cannot be identified by the 𝑘-core model. This

is because the entire graph is 2-core, and we cannot distinguish the

cohesive subgraph and the entire graph based on different 𝑘 values

using the 𝑘-core model.

To overcome this limitation, Bonchi et al. [10] recently proposed

a distance-generalized 𝑘-core concept, called (𝑘, ℎ)-core, where 𝑘
and ℎ (ℎ ≥ 1) are two integer parameters. Specifically, the (𝑘, ℎ)-
core is a maximal subgraph in which every vertex has at least 𝑘

other vertices with distance at most ℎ within that subgraph. As

indicated in [10], such a distance-generalized 𝑘-core model can

detect cohesive subgraphs that cannot be found by the traditional

𝑘-core model. Reconsider the graph in Fig. 1. Suppose that ℎ = 2.

We can easily verify that the subgraph induced by {𝑣8, 𝑣9, · · · , 𝑣14}
is a (6, 2)-core, while the entire graph is a (4, 2)-core. Therefore,

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

312

https://doi.org/10.1145/3459637.3482294
https://doi.org/10.1145/3459637.3482294
https://doi.org/10.1145/3459637.3482294
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3459637.3482294&domain=pdf&date_stamp=2021-10-30

we are able to apply the (𝑘, ℎ)-core model to identify the cohesive

subgraph induced by {𝑣8, 𝑣9, · · · , 𝑣14}.
In this paper, we focus on the problem of computing all (𝑘, ℎ)-

cores on a graph 𝐺 for a given parameter ℎ. Such a problem is also

called (𝑘, ℎ)-core decomposition. The (𝑘, ℎ)-core decomposition

has many applications in practice. As shown in [10], the (𝑘, ℎ)-core
decomposition can be used to speed up the computation of finding

the maximum ℎ-club on a graph and find a good approximation for

the distance-generalized densest subgraph problem.

To compute the (𝑘, ℎ)-core decomposition, Bonchi et al. [10]

proposed a peeling algorithm which iteratively removes the vertex

that has the smallestℎ-hop degree until all vertices are deleted. Here

the ℎ-hop degree of a vertex 𝑣 is defined as the number of other

vertices that are reachable from 𝑣 within ℎ hops. The defect of such

a peeling algorithm is that it needs to recompute the ℎ-hop degrees

for all vertices in 𝑣 ’s ℎ-hop neighborhood when peeling a vertex 𝑣 ,

which is often costly for a large ℎ. Here the ℎ-hop neighborhood of

𝑣 , denoted by 𝑁ℎ
𝑣 (𝐺), is a set of other vertices that are reachable

from 𝑣 within ℎ hops. Bonchi et al. [10] also developed an improved

algorithm with several lower and upper bounding techniques to

alleviate such ℎ-hop degree re-computation costs. However, as

shown in our experiments, such an improved peeling algorithm is

still very costly for ℎ ≥ 3 on large graphs, because the algorithm

may still need to frequently recompute the ℎ-hop degrees.

To circumvent this issue, we propose an efficient peeling algo-

rithm, called KHCore, based on a novel ℎ-hop degree updating

technique. Specifically, when peeling a vertex 𝑣 , we prove that the

ℎ-hop degree for each vertex in 𝑁ℎ
𝑣 (𝐺) can be updated by explor-

ing a small subgraph induced by 𝑁ℎ
𝑣 (𝐺). Based on this key result,

we devise the KHCore algorithm which does not recompute the

ℎ-hop degrees for all vertices in 𝑁ℎ
𝑣 (𝐺), but it updates the ℎ-hop

degrees for every vertex in 𝑁ℎ
𝑣 (𝐺) by only accessing a small sub-

graph induced by 𝑁ℎ
𝑣 (𝐺), thus it is very efficient in practice. We

also develop an elegant bitmap technique to implement the ℎ-hop

degree updating procedure which not only improves the efficiency,

but it also reduces the space usage of our algorithm. In addition,

a sampling-based algorithm is also presented to further improve

the efficiency. To scale to larger graphs, we also propose a par-

allelization strategy to parallelize our algorithms for (𝑘, ℎ)-core
decomposition. Finally, we conduct extensive experiments using 12

real-world datasets to evaluate the proposed algorithms. The results

show that, if ℎ ≥ 3, our exact and sampling-based algorithms (with

a sampling rate 𝑟 = 0.1) using the bitmap technique can achieve up

to 10× and 100× acceleration over the state-of-the-art algorithm.

To summarize, the main contributions of this paper are as follows.

• A new algorithm. We propose a new peeling algorithm, called

KHCore, for (𝑘, ℎ)-core decomposition. The appealing feature of

KHCore is that it can update the ℎ-hop degrees for all vertices in

𝑁ℎ
𝑣 (𝐺) when peeling a vertex 𝑣 by exploring a small subgraph

induced by 𝑁ℎ
𝑣 (𝐺), without recomputing the ℎ-hop degrees for

all vertices in 𝑁ℎ
𝑣 (𝐺).

• Optimization techniques. We develop a bitmap technique,

a sampling-based algorithm, and a parallelization strategy to

improve the efficiency and scalability of KHCore.
• Extensive experiments. We make use of 12 large real-world

datasets to evaluate our algorithms, and the results demonstrate

v2

v1

v3

v4 v8

v6 v9 v11

v14

v13

v7

v12

v10v5

Figure 1: Running example

the efficiency and scalability of our algorithms. The source code

is available at https://github.com/BITDataScience/khcore.

2 PROBLEM STATEMENT
In this paper, we focus on an undirected and unweighted graph

𝐺 = (𝑉 , 𝐸), where 𝑉 is the set of vertices and 𝐸 is the set of edges.

Let 𝑛 = |𝑉 | and 𝑚 = |𝐸 | be the number of vertices and edges

respectively. For each vertex 𝑣 , the neighborhood of 𝑣 , denoted by

𝑁𝑣 (𝐺), is defined as 𝑁𝑣 (𝐺) ≜ {𝑢 ∈ 𝑉 | (𝑣,𝑢) ∈ 𝐸}. The degree of
a vertex 𝑣 in 𝐺 , denoted by 𝑑𝑣 (𝐺), is the cardinality of 𝑁𝑣 (𝐺), i.e.,
𝑑𝑣 (𝐺) = |𝑁𝑣 (𝐺) |. For simplicity, we use 𝑁𝑣 and 𝑑𝑣 to denote 𝑑𝑣 (𝐺)
and 𝑁𝑣 (𝐺) respectively if the context is clear. Let 𝐺 (𝑆) = (𝑆, 𝐸 (𝑆))
be an induced subgraph of 𝐺 if 𝑆 ⊆ 𝑉 and 𝐸 (𝑆) = {(𝑢, 𝑣) | (𝑢, 𝑣) ∈
𝐸,𝑢 ∈ 𝑆, 𝑣 ∈ 𝑆}. According to [28], a 𝑘-core of a graph 𝐺 is defined

as follows.

Definition 2.1 (𝑘-core). Given a graph𝐺 , the 𝑘-core of𝐺 , denoted

by 𝐶𝑘 , is a maximal subgraph of 𝐺 in which every vertex has a

degree at least 𝑘 , i.e., ∀𝑣 ∈ 𝐶𝑘 , 𝑑𝑣 (𝐶𝑘) ≥ 𝑘 .
Based on Definition 2.1, the core number of a vertex 𝑣 , denoted by

core(𝑣), is the largest integer𝑘 such that there is a𝑘-core containing
𝑣 . Denote by 𝑘max the maximum 𝑘 value such that a 𝑘-core of 𝐺

exists, i.e., the maximum core number. It is easy to verify that

the 𝑘-cores satisfy a containment property, i.e., 𝐶𝑘+1 ⊂ 𝐶𝑘 for

all 1 ≤ 𝑘 < 𝑘max. The core decomposition of 𝐺 is a problem of

computing the core numbers for all vertices in 𝐺 . Note that the

core decomposition of a graph 𝐺 can be computed in linear time

by a classic peeling algorithm [6], which iteratively removes the

minimum-degree node in𝐺 using an elegant bin-sort data structure.

Similar to the definition of 𝑘-core, Bonchi et al. [10] recently

introduced a distance-generalized 𝑘-core notion, called (𝑘, ℎ)-core,
based on the ℎ-hop degrees of the vertices. Specifically, we denote

by𝑑𝑖𝑠𝐺 (𝑢, 𝑣) the shortest-path distance between𝑢 and 𝑣 in𝐺 . Given
a positive integer ℎ, the ℎ-hop neighborhood of a vertex 𝑣 in 𝐺 is

defined as 𝑁ℎ
𝑣 (𝐺) ≜ {𝑢 |𝑢 ≠ 𝑣,𝑢 ∈ 𝑉 ,𝑑𝑖𝑠𝐺 (𝑢, 𝑣) ≤ ℎ}. The ℎ-hop

degree of a vertex 𝑣 in 𝐺 , denoted by 𝑑ℎ𝑣 (𝐺), is the cardinality of

𝑁ℎ
𝑣 (𝐺), i.e., 𝑑ℎ𝑣 (𝐺) = |𝑁ℎ

𝑣 (𝐺) |. If the context is clear, we use 𝑑ℎ𝑣 and

𝑁ℎ
𝑣 to denote 𝑑ℎ𝑣 (𝐺) and 𝑁ℎ

𝑣 (𝐺) respectively.
Definition 2.2 ((𝑘 ,ℎ)-core). Given a graph 𝐺 and two integers

𝑘 and ℎ (ℎ > 0), the (𝑘, ℎ)-core of 𝐺 is a maximal subgraph 𝐶ℎ
𝑘

such that every vertex 𝑣 in 𝐶ℎ
𝑘
has an ℎ-hop degree at least 𝑘 , i.e.,

∀𝑣 ∈ 𝐶ℎ
𝑘
, 𝑑ℎ𝑣 (𝐶ℎ𝑘) ≥ 𝑘 .

It is worth noting that in Definition 2.2, the ℎ-hop degree for

each vertex in𝐶ℎ
𝑘
is defined on the subgraph𝐶ℎ

𝑘
(not on the original

graph 𝐺). When ℎ = 1, we can easily show that the (𝑘, ℎ)-core is
the same as the traditional 𝑘-core.

As shown in [10], the (𝑘 ,ℎ)-core of a graph 𝐺 is unique for any

positive integer ℎ. For a positive integer ℎ, the (𝑘, ℎ)-core number

of a vertex 𝑣 , denoted by coreℎ (𝑣), is the largest integer 𝑘 such that

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

313

https://github.com/BITDataScience/khcore

there is a (𝑘, ℎ)-core containing 𝑣 . Let 𝑘ℎ
max

be the maximum 𝑘 value

such that a (𝑘, ℎ)-core of 𝐺 exists, i.e., the maximum (𝑘, ℎ)-core
number of 𝐺 . Then, similar to the traditional 𝑘-cores, the (𝑘, ℎ)-
cores of 𝐺 also satisfy a containment property, i.e., 𝐶ℎ

𝑘+1 ⊆ 𝐶
ℎ
𝑘
for

all 1 ≤ 𝑘 < 𝑘ℎ
max

.

For a positive integer ℎ, the distance-generalized core decompo-

sition of 𝐺 is a problem of determining the (𝑘, ℎ)-core numbers for

all vertices in 𝐺 . Below, we formally define our problem.

Problem statement. Given a graph𝐺 and a positive integer ℎ, our

goal is to compute the (𝑘, ℎ)-core number for each vertex in 𝐺 .

3 EXISTING SOLUTIONS
In this section, we introduce several existing solutions proposed

in [10] to compute the (𝑘, ℎ)-core decomposition. Similar to the

traditional core decomposition algorithm, the (𝑘, ℎ)-core decom-

position algorithm proposed in [10] is also based on a peeling idea.

In particular, the peeling algorithm iteratively removes the vertex

with the smallest ℎ-hop degree and sets the (𝑘, ℎ)-core number as

its ℎ-hop degree at the time of removal. The detailed procedure of

the peeling algorithm is shown in Algorithm 1.

The algorithm first computes the ℎ-hop degree for each vertex

𝑣 ∈ 𝑉 (line 3), and uses a bucketing array 𝐵 to maintain all the

vertices in 𝑉 that have the same ℎ-hop degree (line 4). Then, the

algorithm iteratively deletes the vertices in 𝑉 based on the non-

decreasing order of the ℎ-hop degrees of the vertices (lines 5-12).

Specifically, in 𝑘-th iteration, the algorithm sequentially removes

each vertex 𝑣 in 𝐵 [𝑘] (the ℎ-hop degrees of 𝑣 is equal to 𝑘) and sets

its (𝑘, ℎ)-core numbers as 𝑘 (lines 6-8). After that, the algorithm

updates theℎ-hop degrees of the vertices in 𝑣 ’sℎ-hop neighborhood

(𝑁ℎ
𝑣), because the ℎ-hop degrees of the vertices in 𝑁ℎ

𝑣 may need

to update after removing 𝑣 . For each 𝑢 ∈ 𝑁ℎ
𝑣 , the algorithm first

recomputes the ℎ-hop degree of 𝑢 in the reduced subgraph 𝐺 (𝑉 \
{𝑣}) (line 10), and then moves 𝑢 into 𝐵 [max{𝑘,𝑑ℎ𝑢 (𝐺 (𝑉 \ {𝑣}))}]
if necessary. It is easy to see that the number of iterations of the

algorithm is at most 𝑛, as the ℎ-hop degrees of the vertices in𝐺 are

bounded by 𝑛. The time complexity of Algorithm 1 is𝑂 (𝑛�̃�(�̃� +�̃�))
[10], where �̃� and �̃� are the number of vertices and edges of the

largest subgraph induced by the ℎ-hop neighborhood of a vertex in

𝑉 , respectively.

As analyzed in [10], the most time-consuming step in Algo-

rithm 1 is to recompute the ℎ-hop degrees of all the vertices in

𝑁ℎ
𝑣 when deleting a vertex 𝑣 . To speed up the algorithm, Bonchi

et al. [10] proposed two improved algorithms based on lower and

upper bounding techniques, called ℎ-LB and ℎ-LB+UB respectively.

In particular, the ℎ-LB algorithm first estimates the lower bound of

the (𝑘, ℎ)-core number for each vertex. Then, based on the lower

bounds, the ℎ-LB algorithm can avoid a number of useless ℎ-hop

degree re-computations for the vertices whose lower bounds are no

less than the ℎ-hop degree of the current removed vertex [10]. The

ℎ-LB+UB algorithm also leverages an upper bound of the (𝑘, ℎ)-core
number for each vertex to further improve the efficiency. Specif-

ically, the algorithm first applies the upper bounds of vertices to

partition the graph into several nested subgraphs. Then, the algo-

rithm invokesℎ-LB to compute (𝑘, ℎ)-cores in the induced subgraph
𝐺 (𝑉 [𝑖]) following a top-down manner, where 𝑉 [𝑖] denotes a set
of vertices with upper bounds no less than 𝑖 . As shown in [10], the

Algorithm 1: The basic peeling algorithm [10]

Input: a graph𝐺 = (𝑉 , 𝐸) and a positive integer ℎ

Output: coreℎ (𝑣) for all 𝑣 ∈ 𝑉
1 Initialize 𝐵 [𝑣] ← ∅ for each 𝑣 ∈ 𝑉 ;

2 for 𝑣 ∈ 𝑉 do
3 Compute 𝑑ℎ𝑣 ;

4 𝐵 [𝑑ℎ𝑣] ← 𝐵 [𝑑ℎ𝑣] ∪ {𝑣 };
5 for 𝑘 = 1 to 𝑛 do
6 while 𝐵 [𝑘] ≠ ∅ do
7 Pick and remove a vertex 𝑣 from 𝐵 [𝑘];
8 coreℎ (𝑣) ← 𝑘 ;

9 for 𝑢 ∈ 𝑁ℎ
𝑣 do

10 Compute 𝑑ℎ𝑢 (𝐺 (𝑉 \ {𝑣 })) ;
11 Move 𝑢 to 𝐵 [max{𝑘,𝑑ℎ𝑢 (𝐺 (𝑉 \ {𝑣 })) }];
12 𝑉 ← 𝑉 \ {𝑣 };

13 return coreℎ (𝑣) for all 𝑣 ∈ 𝑉 ;

ℎ-LB+UB algorithm is the state-of-the-art algorithm for computing

the (𝑘, ℎ)-core decomposition.

Limitations of the existing solutions. Although the ℎ-LB+UB

algorithm is more efficient than the basic peeling algorithm, it is still

very costly for handling medium-sized graphs given that ℎ ≥ 3. For

example, as reported in [10], the ℎ-LB+UB algorithm takes nearly

one hour to compute the (𝑘, ℎ)-core decomposition on the social

network Douban (154,908 vertices and 327,162 edges) when ℎ = 4.

The main defect of the ℎ-LB+UB algorithm is that the algorithm still

needs to frequently recompute the ℎ-hop degrees of the vertices

when peeling a vertex. For a relatively large ℎ value (e.g., ℎ ≥ 3),

the time overheads for recomputing ℎ-hop degrees can be very

high on large graphs. To circumvent this issue, in the following

sections, we will propose several efficient algorithms which can

dynamically update the ℎ-hop degrees of the vertices when peeling

a vertex, instead of recomputing the ℎ-hop degrees. Due to the

efficient ℎ-hop degree updating technique, the proposed algorithms

are much faster than the state-of-the-art ℎ-LB+UB algorithm as

confirmed in our experiments.

4 THE PROPOSED ALGORITHMS
In this section, we propose several efficient (𝑘, ℎ)-core decomposi-

tion algorithms based on a novel ℎ-hop degree updating technique.

Below, we first introduce the basic version of our (𝑘, ℎ)-core de-
composition algorithm. Then, we will develop a bitmap technique

to improve the time and space overheads of our basic algorithm. Fi-

nally, we will propose a more efficient sampling-based algorithm, as

well as a parallelization technique to further improve the efficiency

and scalability of the (𝑘, ℎ)-core decomposition algorithms.

4.1 The basic ℎ-hop degree updating algorithm
Recall that the most time-consuming step in Algorithm 1 is to

recompute the ℎ-hop degrees of the vertices in 𝑁ℎ
𝑣 after peeling 𝑣

(lines 9-10 of Algorithm 1). To alleviate the computational costs,

we propose a novel ℎ-hop degree updating technique based on the

following key observations.

Note that when deleting 𝑣 , only the vertices in 𝑁ℎ
𝑣 may need

to update their ℎ-hop degrees. For any vertex 𝑢 ∉ 𝑁ℎ
𝑣 , its ℎ-hop

degree keeps unchanged after removing 𝑣 . For a vertex 𝑢 ∈ 𝑁ℎ
𝑣 , the

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

314

question is how can we efficiently update theℎ-hop degree of𝑢 after

deleting 𝑣 , without recomputing its ℎ-hop degree on 𝐺 (𝑉 \ {𝑣})
(i.e., 𝑑ℎ𝑢 (𝐺 (𝑉 \ {𝑣}))). Clearly, after deleting 𝑣 , the ℎ-hop degree of

𝑢 may reduce by more than 1 if ℎ > 1. In order to derive the exact

gap between 𝑑ℎ𝑢 and 𝑑ℎ𝑢 (𝐺 (𝑉 \ {𝑣})), it is sufficient to consider the

vertices in 𝑁ℎ−𝑠
𝑣 ∪ {𝑣}, where 𝑠 = 𝑑𝑖𝑠𝐺 (𝑢, 𝑣) is the shortest-path

distance between 𝑢 and 𝑣 in 𝐺 (𝑠 ≤ ℎ). Below, we give two key

observations.

Observation 1. Given a positive integer ℎ ∈ N+ and a vertex
𝑢 ∈ 𝑁ℎ

𝑣 , we have 𝑆𝑢 = 𝑁ℎ
𝑢 \(𝑁ℎ−𝑠

𝑣 ∪{𝑣}) ⊆ 𝑁ℎ
𝑢 (𝐺 (𝑉 \{𝑣})) for 𝑠 ≤ ℎ,

where 𝑆𝑢 is the set of vertices that are still the ℎ-hop neighborhoods
of 𝑢 after removing 𝑣 from 𝐺 .

Proof. Clearly, for any vertex𝑤 ∈ 𝑆𝑢 , we have 𝑑𝑖𝑠𝐺 (𝑤, 𝑣) > ℎ−
𝑠 by definition. To prove the observation, we consider two disjoint

subsets of 𝑆𝑢 : 𝐴 = {𝑤 |𝑤 ∈ 𝑆𝑢 , 𝑑𝑖𝑠𝐺 (𝑤, 𝑣) > ℎ} and 𝐵 = {𝑤 |𝑤 ∈
𝑆𝑢 , ℎ − 𝑠 < 𝑑𝑖𝑠𝐺 (𝑤, 𝑣) ≤ ℎ}. First, we claim that for any vertex

𝑤 ∈ 𝐴, we have𝑤 ∈ 𝑁ℎ
𝑢 (𝐺 (𝑉 \ {𝑣})). Since𝑤 ∈ 𝑆𝑢 ⊂ 𝑁ℎ

𝑢 , we have

𝑑𝑖𝑠𝐺 (𝑤,𝑢) ≤ ℎ < 𝑑𝑖𝑠𝐺 (𝑤, 𝑣). That is to say, there does not exist any
shortest path between 𝑢 and 𝑤 that passes through 𝑣 . Therefore,

after deleting 𝑣 from 𝐺 , the shortest-path distance between𝑤 and

𝑢 does not affect, indicating that 𝑑𝑖𝑠𝐺\{𝑣 } (𝑤,𝑢) ≤ ℎ. Second, for
any vertex 𝑤 ∈ 𝐵, we have 𝑑𝑖𝑠𝐺 (𝑢,𝑤) < 𝑑𝑖𝑠𝐺 (𝑢, 𝑣) + 𝑑𝑖𝑠𝐺 (𝑣,𝑤).
This is because 𝑑𝑖𝑠𝐺 (𝑢,𝑤) ≤ ℎ, 𝑑𝑖𝑠𝐺 (𝑢, 𝑣) = 𝑠 and 𝑑𝑖𝑠𝐺 (𝑣,𝑤) >
ℎ − 𝑠 . Therefore, any shortest-path between 𝑢 and𝑤 does not pass

through 𝑣 , which suggests that 𝑑𝑖𝑠𝐺 (𝑉 \{𝑣 }) (𝑤,𝑢) ≤ ℎ. □

Based on the Observation 1, we can see that only the vertices

in 𝑁ℎ−𝑠
𝑣 ∪ {𝑣} may affect the ℎ-hop degree of 𝑢 after deleting 𝑣 for

any 𝑢 ∈ 𝑁ℎ
𝑣 . Below, we show that any vertex𝑤 in 𝑁ℎ−𝑠

𝑣 ∪ {𝑣} that
satisfies 𝑑𝑖𝑠𝐺 (𝑉 \{𝑣 }) (𝑢,𝑤) > ℎ must be excluded in 𝑁ℎ

𝑢 (𝐺 (𝑉 \ {𝑣}).

Observation 2. Given a positive integer ℎ ∈ N+ and a vertex
𝑢 ∈ 𝑁ℎ

𝑣 , we define 𝐹𝑢 ≜ {𝑤 |𝑤 ∈ 𝑁ℎ−𝑠
𝑣 , 𝑑𝑖𝑠𝐺 (𝑉 \{𝑣 }) (𝑢,𝑤) > ℎ}.

Then, we have 𝑁ℎ
𝑢 \ 𝑁ℎ

𝑢 (𝐺 (𝑉 \ {𝑣})) = {𝑣} ∪ 𝐹𝑢 .

Proof. Clearly, the vertex 𝑣 is contained in 𝑁ℎ
𝑢 \ 𝑁ℎ

𝑢 (𝐺 (𝑉 \
{𝑣})). On the one hand, for any vertex 𝑤 ≠ 𝑣 and 𝑤 ∈ 𝑁ℎ

𝑢 \
𝑁ℎ
𝑢 (𝐺 (𝑉 \{𝑣})), we have 𝑑𝑖𝑠𝐺 (𝑢,𝑤) ≤ ℎ and 𝑑𝑖𝑠𝐺 (𝑉 \{𝑣 }) (𝑢,𝑤)> ℎ.

Therefore, the shortest path from 𝑢 to 𝑤 in 𝐺 must past through

𝑣 . Since 𝑑𝑖𝑠𝐺 (𝑢, 𝑣) = 𝑠 , we have 𝑑𝑖𝑠𝐺 (𝑣,𝑤) ≤ ℎ − 𝑠 . In other words,

𝑤 ∈ 𝑁ℎ−𝑠
𝑣 which indicates that 𝑤 ∈ 𝐹𝑢 holds. On the other hand,

for any vertex 𝑤 ≠ 𝑣 and 𝑤 ∈ 𝐹𝑢 , 𝑤 ∉ 𝑁ℎ
𝑢 (𝐺 (𝑉 \ {𝑣})) clearly

holds (by the definition of 𝐹𝑢). Since𝑤 ∈ 𝑁ℎ−𝑠
𝑣 and 𝑑𝑖𝑠𝐺 (𝑢, 𝑣) = 𝑠 ,

we have 𝑑𝑖𝑠𝐺 (𝑢,𝑤) ≤ ℎ by triangle inequality. Hence, we obtain

that𝑤 ∈ 𝑁ℎ
𝑢 . This completes the proof. □

Based on the Observation 2, we can obtain that 𝑑ℎ𝑢 − 𝑑ℎ𝑢 (𝐺 (𝑉 \
{𝑣})) = 1 + |𝐹𝑢 |. As a result, the key to update the ℎ-hop degree

of a vertex 𝑢 after removing 𝑣 is to identify the set 𝐹𝑢 . Since the

set 𝑁ℎ−𝑠
𝑣 can be easily derived by 𝑁ℎ

𝑣 , the challenge is how can we

efficiently compute 𝑑𝑖𝑠𝐺 (𝑉 \{𝑣 }) (𝑢,𝑤) on the graph after removing

𝑣 . Below, we prove an interesting result which indicates that the

shortest-path distance 𝑑𝑖𝑠𝐺 (𝑉 \{𝑣 }) (𝑢,𝑤) can be computed on the

subgraph induced by 𝑁ℎ
𝑣 if 𝑑𝑖𝑠𝐺 (𝑉 \{𝑣 }) (𝑢,𝑤) ≤ ℎ.

Theorem 4.1. Given a positive integer ℎ ∈ N+, all shortest-paths
between 𝑢 ∈ 𝑁ℎ

𝑣 and 𝑤 ∈ 𝑁ℎ−𝑠
𝑣 on 𝐺 (𝑉 \ {𝑣}), which satisfy

Algorithm 2: KHCore
Input: a graph𝐺 = (𝑉 , 𝐸) and a positive integer ℎ

Output: coreℎ (𝑣) for all 𝑣 ∈ 𝑉
1 for 𝑣 ∈ 𝑉 do
2 Compute 𝑑ℎ𝑣 ;

3 while𝑉 ≠ ∅ do
4 𝑘 ← arg min𝑣∈𝑉 {𝑑ℎ𝑣 };
5 𝐵 ← {𝑣 |𝑣 ∈ 𝑉 ,𝑑ℎ𝑣 = 𝑘 };
6 while 𝐵 ≠ ∅ do
7 Pick and remove a vertex 𝑣 from 𝐵;

8 coreℎ (𝑣) ← 𝑘 ;

9 𝑑ℎ (𝐺 (𝑉 \ {𝑣 })) ← UpdateHNbr(𝐺,ℎ, 𝑣);

10 for 𝑢 ∈ 𝑁ℎ
𝑣 do

11 if 𝑑ℎ𝑢 (𝐺 (𝑉 \ {𝑣 })) ≤ 𝑘 and 𝑢 ∉ 𝐵 then
12 𝐵 ← 𝐵 ∪ {𝑢 };

13 𝑉 ← 𝑉 \ {𝑣 };

14 return coreℎ (𝑣) for all 𝑣 ∈ 𝑉 ;

𝑑𝑖𝑠𝐺 (𝑉 \{𝑣 }) (𝑢,𝑤) ≤ ℎ, are contained in the induced subgraph𝐺 (𝑁ℎ
𝑣),

where 𝑠 = 𝑑𝑖𝑠𝐺 (𝑢, 𝑣). In other words, for any shortest path 𝑃 =

(𝑢, ...,𝑤𝑖 , ...,𝑤) between 𝑢 and 𝑤 on 𝐺 (𝑉 \ {𝑣}), we have 𝑤𝑖 ∈ 𝑁ℎ
𝑣

for all𝑤𝑖 ∈ 𝑃 .

Proof. Let𝐺 ′ = 𝐺 (𝑉 \ {𝑣}). Suppose, to the contrary, that there
exists a shortest-path 𝑃 = (𝑢, ...,𝑤 ′, ...,𝑤) between 𝑢 ∈ 𝑁ℎ

𝑣 and

𝑤 ∈ 𝑁ℎ−𝑠
𝑣 on 𝐺 ′ that satisfies 𝑤 ′ ∉ 𝑁ℎ

𝑣 . By this assumption, we

have 𝑑𝑖𝑠𝐺′ (𝑢,𝑤) = 𝑑𝑖𝑠𝐺′ (𝑢,𝑤 ′) +𝑑𝑖𝑠𝐺′ (𝑤 ′,𝑤). Then, 𝑑𝑖𝑠𝐺 (𝑣,𝑤 ′) −
𝑑𝑖𝑠𝐺 (𝑣,𝑢) ≤ 𝑑𝑖𝑠𝐺 (𝑢,𝑤 ′) ≤ 𝑑𝑖𝑠𝐺′ (𝑢,𝑤 ′) holds by triangle inequal-

ity. Since𝑤 ′ ∉ 𝑁ℎ
𝑣 (by assumption), we have 𝑑𝑖𝑠𝐺 (𝑣,𝑤 ′) > ℎ. Thus,

we have ℎ − 𝑠 < 𝑑𝑖𝑠𝐺′ (𝑢,𝑤 ′). Similarly, we have 𝑑𝑖𝑠𝐺 (𝑣,𝑤 ′) −
𝑑𝑖𝑠𝐺 (𝑣,𝑤) ≤ 𝑑𝑖𝑠𝐺 (𝑤 ′,𝑤) ≤ 𝑑𝑖𝑠𝐺′ (𝑤 ′,𝑤). Therefore, we get that
𝑠 = ℎ − (ℎ − 𝑠) < 𝑑𝑖𝑠𝐺′ (𝑤 ′,𝑤). Putting it all together, we can derive

that ℎ < 𝑑𝑖𝑠𝐺′ (𝑢,𝑤) which is a contradiction. □

Let 𝐹𝑢 ≜ {𝑤 |𝑤 ∈ 𝑁ℎ−𝑠
𝑣 , 𝑑𝑖𝑠𝐺 (𝑉 \{𝑣 }) (𝑢,𝑤) ≤ ℎ} = 𝑁ℎ−𝑠

𝑣 \ 𝐹𝑢 . By
Theorem 4.1, 𝐹𝑢 can be determined on the subgraph induced by

𝑁ℎ
𝑣 . As a result, we are also able to compute |𝐹𝑢 | on the induced

subgraph 𝐺 (𝑁ℎ
𝑣) (not on the entire graph 𝐺 (𝑉 \ {𝑣})). In other

words, we only need to explore a small subgraph𝐺 (𝑁ℎ
𝑣) to maintain

the ℎ-hop degrees for all vertices in 𝑁ℎ
𝑣 after removing 𝑣 , without

recomputing the ℎ-hop degree for every vertex in 𝑁ℎ
𝑣 .

Based on such an efficient ℎ-hop degree updating technique, we

propose a new (𝑘, ℎ)-core decomposition algorithm, called KHCore,
which is shown in Algorithm 2. Algorithm 2 is also a peeling al-

gorithm which iteratively deletes the vertices with the minimum

ℎ-hop degree (lines 3-13 in Algorithm 2). The algorithm terminates

when all vertices are deleted. However, unlike Algorithm 1, Algo-

rithm 2 invokes a UpdateHNbr procedure (Algorithm 3) to update

the ℎ-hop degree for each vertex in 𝑁ℎ
𝑣 after removing 𝑣 based on

the results shown in Theorem 4.1 (line 9). Below, we describe the

detailed implementation of Algorithm 3.

In Algorithm 3, we develop a new data structure, named Reach,
to maintain the set of vertices that are reachable from𝑢 ∈ 𝑁ℎ

𝑣 within

ℎ hops in the induced subgraph 𝐺 (𝑁ℎ
𝑣). Initially, for each 𝑢 ∈ 𝑁ℎ

𝑣 ,

if 𝑑𝑖𝑠𝐺 (𝑣,𝑢) < ℎ, Reach(𝑢) = {𝑢}, and otherwise Reach(𝑢) = ∅
(lines 2-5). This is because when 𝑑𝑖𝑠𝐺 (𝑣,𝑢) = ℎ, the ℎ-hop degree

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

315

Algorithm 3: UpdateHNbr (𝐺,ℎ, 𝑣)
1 𝐺 (𝑅) = (𝑅, 𝐸 (𝑅)) ← the subgraph induced by 𝑁ℎ

𝑣 ;

2 for 𝑢 ∈ 𝑅 do
3 if 𝑑𝑖𝑠𝐺 (𝑣,𝑢) < ℎ then
4 Reach[0] [𝑢] ← {𝑢 }; Reach[1] [𝑢] ← {𝑢 };
5 else Reach[0] [𝑢] ← ∅; Reach[1] [𝑢] ← ∅ ;
6 𝑝 ← 1; 𝑞 ← 0;

7 for ℎ𝑜𝑝 = 1 to ℎ do
8 𝑞 ← 𝑝 ; 𝑝 ← 1 − 𝑝 ;
9 for (𝑢, 𝑤) ∈ 𝐸 (𝑅) do
10 Reach[𝑞] [𝑢] ← Reach[𝑞] [𝑢] ∪ Reach[𝑝] [𝑤];
11 Reach[𝑞] [𝑤] ← Reach[𝑞] [𝑤] ∪ Reach[𝑝] [𝑢];

12 for 𝑢 ∈ 𝑅 do
13 𝑠 ← 𝑑𝑖𝑠𝐺 (𝑢, 𝑣) ; 𝑑ℎ𝑢 (𝐺 (𝑉 \ {𝑣 })) ← 𝑑ℎ𝑢 − 1;

14 for 𝑤 ∈ 𝑅 s.t. 𝑑𝑖𝑠𝐺 (𝑣, 𝑤) ≤ ℎ − 𝑠 do
15 if 𝑤 ∉ Reach[𝑞] [𝑢] then
16 𝑑ℎ𝑢 (𝐺 (𝑉 \ {𝑣 })) ← 𝑑ℎ𝑢 (𝐺 (𝑉 \ {𝑣 })) − 1;

17 return 𝑑ℎ𝑢 (𝐺 (𝑉 \ {𝑣 })) for each vertex 𝑢 ∈ 𝑅;

of 𝑢 decreases by 1 after deleting 𝑣 , and thus we do not need to

maintain the Reach structure for 𝑢 in this case (i.e., Reach(𝑢) = ∅).
Then, we can make use of a dynamic programming (DP) procedure

to identify all the vertices in 𝑁ℎ
𝑣 that are reachable from 𝑢 within ℎ

hops (lines 6-11). In particular, the DP procedure is based on the

following results. Let 𝑅𝑠𝑢 be the set of vertices that are reachable

from 𝑢 within 𝑠 hops. Then, 𝑅𝑠+1𝑢 can be obtained by merging the

sets 𝑅𝑠𝑤 for all𝑤 ∈ 𝑁𝑢 ∪ {𝑢}, i.e., 𝑅𝑠+1𝑢 =
⋃

𝑤∈𝑁𝑢∪{𝑢 } 𝑅
𝑠
𝑤 . We can

adopt the Reach structure to implement such a DP procedure which

is shown in lines 6-11 of Algorithm 3. Subsequently, Algorithm 3

applies the results in Theorem 4.1 to update the ℎ-hop degree for

each 𝑢 ∈ 𝑁ℎ
𝑣 (lines 12-16).

Complexity analysis. First, Algorithm 3 takes 𝑂 (𝑑ℎ𝑣) time to ini-

tialize theReach structures. Then, the algorithm takes𝑂 (ℎ |𝐸 (𝑅) |𝑑ℎ𝑣)
time to compute the Reach sets (lines 7-12). This is because the size

of the Reach set is bounded by 𝑑ℎ𝑣 , and thus the set union opera-

tor can be computed in 𝑂 (𝑑ℎ𝑣) time using some hash techniques.

Finally, the time cost for updating the ℎ-hop degrees in line 13-17

is 𝑂 (𝑑ℎ𝑣 × 𝑑ℎ−1

𝑣). Let �̃� and �̃� be the number of vertices and edges

of the largest subgraph induced by the ℎ-hop neighborhood of a

vertex in 𝑉 , respectively. Then, the worst-case time complexity of

Algorithm 3 is bounded by 𝑂 (�̃�2 + ℎ�̃��̃�). Based on this, we can

easily derive that the worst-case time complexity of Algorithm 2

is 𝑂 (𝑛�̃�2 + 𝑛ℎ�̃��̃�), which is asymptotically the same as the time

complexity of Algorithm 1 (because ℎ is often a very small integer).

For the space overhead, we need to maintain the Reach sets for

all vertices in 𝑁ℎ
𝑣 when deleting a vertex 𝑣 which takes at most

𝑂 ((𝑑ℎ𝑣)2) ≤ 𝑂 (�̃�2) in total. Therefore, the space complexity of Al-

gorithm 2 can be bounded by 𝑂 (𝑚 + 𝑛 + �̃�2). Below, we propose a
bitmap technique to further improve the time and space overheads

of our algorithm.

4.2 A bitmap optimization
Recall that in Algorithm 3, we have aReach structure for each vertex
𝑢 ∈ 𝑁ℎ

𝑣 which maintains the set of vertices in 𝑁ℎ
𝑣 that are reachable

from 𝑢 within ℎ hops. To improve the efficiency of the algorithm,

Algorithm 4: BmUpdateHNBr (𝐺,ℎ, 𝑣)

1 𝐺 (𝑅) = (𝑅, 𝐸 (𝑅)) ← the subgraph induced by 𝑅 = 𝑁ℎ
𝑣 ;

2 Initialize the bitmaps (the Reach arrays) for all 𝑢𝑖 ∈ 𝑅 to 0;

3 𝑁ℎ−1

𝑣 ← {𝑢𝑖 ∈ 𝑅 |𝑑𝑖𝑠𝐺 (𝑣,𝑢𝑖) < ℎ}; 𝑑 ← |𝑁ℎ−1

𝑣 |;
4 for 𝑢𝑖 ∈ 𝑁ℎ−1

𝑣 do
5 Reach[0] [𝑖] [div(𝑖, 64)] ← 1 ≪ mod(𝑖, 64) ;
6 Reach[1] [𝑖] [div(𝑖, 64)] ← 1 ≪ mod(𝑖, 64) ;
7 𝑝 ← 1; 𝑞 ← 0;

8 for ℎ𝑜𝑝 = 1 to ℎ do
9 𝑞 ← 𝑝 ; 𝑝 ← 1 − 𝑝 ;

10 for (𝑢𝑖 ,𝑢 𝑗) ∈ 𝐸 (𝑅) do
11 for 𝑏 = 0 to div(𝑑, 64) do
12 Reach[𝑞] [𝑖] [𝑏] ∨ = Reach[𝑝] [𝑗] [𝑏];
13 Reach[𝑞] [𝑗] [𝑏] ∨ = Reach[𝑝] [𝑖] [𝑏];

14 for 𝑢𝑖 ∈ 𝑅 do
15 𝑠 ← 𝑑𝑖𝑠𝐺 (𝑢𝑖 , 𝑣) ; 𝑑ℎ𝑢𝑖 (𝐺 (𝑉 \ {𝑣 })) ← 𝑑ℎ𝑢𝑖 − 1;

16 for 𝑢 𝑗 ∈ 𝑅 s.t. 𝑑𝑖𝑠𝐺 (𝑣,𝑢 𝑗) ≤ ℎ − 𝑠 do
17 if ((1 ≪ mod(𝑗, 64)) ∧ Reach[𝑞] [𝑖] [div(𝑗, 64)]) = 0

then 𝑑ℎ𝑢𝑖 (𝐺 (𝑉 \ {𝑣 })) ← 𝑑ℎ𝑢𝑖 (𝐺 (𝑉 \ {𝑣 })) − 1 ;

18 return 𝑑ℎ𝑢𝑖 (𝐺 (𝑉 \ {𝑣 })) for each vertex 𝑢𝑖 ∈ 𝑅;

we develop a bitmap to implement such a Reach structure for each

vertex 𝑢 ∈ 𝑁ℎ
𝑣 . Suppose without loss of generality that the vertices

in 𝑁ℎ
𝑣 are labeled from 𝑢0 to 𝑢

𝑑ℎ𝑣 −1
. For each vertex 𝑢𝑖 ∈ 𝑁ℎ

𝑣 , we

create a bitmap to represent the Reach structure of 𝑢𝑖 . If 𝑢 𝑗 (𝑗 ≠ 𝑖 ,

𝑗 ∈ {0, 1, · · · , 𝑑ℎ𝑣 − 1}) is reachable within ℎ hops from 𝑢𝑖 in the

subgraph induced by 𝑁ℎ
𝑣 , the 𝑗-th bit of 𝑢𝑖 ’s bitmap is equal to 1,

and otherwise it equals 0. For example, if 𝑢𝑖 ’s bitmap is 10101, we

can conclude that 𝑢𝑖 can reach 𝑢0, 𝑢2, and 𝑢4 within ℎ hops in the

induced graph𝐺 (𝑁ℎ
𝑣). To merge two Reach sets, we can perform a

bitwise-or operator using two bitmapswhich is much more efficient

than the traditional set-union operator. In this sense, the bitmap
technique is not only reduce the space usage, but it also improves

the time overhead of our algorithm.

Implementation details. The detailed implementation of the

bitmap technique is outlined in Algorithm 4. Specifically, we make

use of a set of 64-bit integers to represent a bitmap Reach(𝑢𝑖) for
each vertex 𝑢𝑖 ∈ 𝑁ℎ

𝑣 . In other words, the bitmap of a vertex 𝑢𝑖 (i.e.,

Reach(𝑢𝑖)) is an integer array. For any vertex 𝑢𝑖 , if 𝑢 𝑗 is reachable

from 𝑢𝑖 within ℎ hops in𝐺 (𝑁ℎ
𝑣), then we can compute the position

of 𝑢 𝑗 in 𝑢𝑖 ’s bitmap array by div(𝑗, 64) =
⌊
𝑗

64

⌋
. In Algorithm 4, for

each vertex 𝑢𝑖 ∈ 𝑁ℎ
𝑣 , we first initialize its bitmap to 0 (line 1 of

Algorithm 4). Then, for each vertex 𝑢𝑖 , we set the 𝑖-th bit of 𝑢𝑖 ’s

bitmap to 1 (lines 4-6), denoting that the Reach set of 𝑢𝑖 contains

𝑢𝑖 itself. Note that in Algorithm 4, the notation mod(𝑖, 64) means

𝑖%64 (lines 5-6), which is used to determine the bit-position of 𝑢𝑖
in a bitmap. After that, we perform the DP procedure to compute

the Reach sets. Note that the process of merging two Reach sets is

implemented by a bitwise-or operator (lines 11-13). Finally, Algo-
rithm 4 updates theℎ-hop degrees for all vertices in𝑁ℎ

𝑣 (lines 14-17).

Notice that based on the bitmap structure, we can use a bitwise-and
operator to determine whether a vertex 𝑢 𝑗 ∈ 𝑁ℎ−𝑠

𝑣 is reachable

from 𝑢𝑖 within ℎ hops (line 17).

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

316

Algorithm 5: KHCoreSamp
Input: a graph𝐺 = (𝑉 , 𝐸) , a positive integer ℎ, and a sampling

rate 𝑟

Output: coreℎ (𝑣) for all 𝑣 ∈ 𝑉
1 Lines 1-2 of Algorithm 2;

2 𝑆 ← uniformly sampling 𝑟 |𝑉 | vertices from𝑉 ;

3 select[𝑣] ← |{𝑢 |𝑢 ∈ 𝑁ℎ
𝑣 ,𝑢 ∈ 𝑆 } | for each 𝑣 ∈ 𝑉 ;

4 rate[𝑣] ← select[𝑣]/𝑑ℎ𝑣 for each 𝑣 ∈ 𝑉 ;

5 Lines 3-8 of Algorithm 2;

6 𝑑ℎ (𝐺 (𝑉 \ {𝑣 })) ← UpdateHNbrSamp(𝐺,ℎ, 𝑣, 𝑆, select, rate);
7 Lines 10-14 of Algorithm 2;

Complexity analysis. Armed with the bitmap technique, Algo-

rithm 4 can significantly reduce the set-union costs. In our basic

KHCore algorithm (Algorithm 3), the set-union operator can be

done in𝑂 (𝑑ℎ𝑣) time (lines 10-12 of Algorithm 3). However, by using

the bitmap technique, we can implement the set union operator by a

bitwise-or operator which takes𝑂 (𝑑ℎ𝑣 /64) time. In other words, the

bitmap technique can achieve around 64× speedup for the set union
computation. As a result, the total time costs of the KHCore algo-
rithm with bitmap technique can be bounded by𝑂 (𝑛�̃�2+𝑛ℎ�̃��̃�/64).
Since ℎ is typically smaller than 64, the time complexity of our al-

gorithm is lower than that of Algorithm 1 which is confirmed in

our experiments.

Remark. It is worth remarking that the lower and upper bounding

techniques developed in [10] can also be integrated into Algorithm 2.

However, we empirically find that such lower and upper bound-

ing techniques cannot significantly improve the efficiency of our

algorithm, thus in this work we mainly focus on our algorithms

without using the lower and upper bounds developed in [10]. Also,

it is worth emphasizing that the bitmap technique is an elegant

implementation of our theoretical finding; it is not a general op-

timization technique and it cannot be used in the state-of-the-art

algorithm [10]. In the experiments, we will focus mainly on evalu-

ating the proposed algorithms with the bitmap implementation.

4.3 A sampling-based algorithm
To further improve the efficiency, we propose a sampling-based

algorithm to compute the (𝑘, ℎ)-core decomposition. The key idea

of the sampling-based algorithm is that when deleting a vertex 𝑣 ,

it estimates the updated ℎ-hop degree for a vertex 𝑢 ∈ 𝑁ℎ
𝑣 using

the randomly sampled vertices (not all vertices in 𝑁ℎ
𝑣). Due to the

less computation for updating the ℎ-hop degrees of vertices, the

sampling-based approach can significantly reduce the time cost

compared to the exact algorithm.

The implementation details of the sampling-based algorithm

are shown in Algorithm 5. First, the algorithm randomly selects

𝑟 |𝑉 | vertices from 𝑉 (line 2 of Algorithm 5), where 0 < 𝑟 < 1

denotes the sampling rate. Then, for each vertex 𝑣 , the algorithm

computes the number of selected vertices in the ℎ-hop neighbor-

hood of 𝑣 (line 3), denoted by select[𝑣]. Based on select[𝑣], the
algorithm calculates the sampling rate for 𝑣 (line 4 of Algorithm 5),

i.e., rate[𝑣] = select[𝑣]/𝑑ℎ𝑣 . Similar to Algorithm 2, the algorithm

iteratively deletes the vertex that has the smallest ℎ-hop degree

(lines 5-7). When removing a vertex 𝑣 , it invokes Algorithm 6 to

update the ℎ-hop degrees of the vertices in 𝑁ℎ
𝑣 (line 6).

Algorithm 6: UpdateHNbrSamp (𝐺,ℎ, 𝑣, 𝑆, select, rate)

1 Lines 1-2 of Algorithm 4;

2 �̃�ℎ−1

𝑣 ← 𝑁ℎ−1

𝑣 ∩ 𝑆 ; 𝑅 = 𝑁ℎ
𝑣 ; 𝑑 ← |�̃�ℎ−1

𝑣 |;
3 Lines 4-13 of Algorithm 4;

4 for 𝑢𝑖 ∈ 𝑅 do
5 𝑠 ← 𝑑𝑖𝑠𝐺 (𝑢𝑖 , 𝑣) ; cnt← 0;

6 if 𝑣 ∈ 𝑆 then cnt← 1;

7 for 𝑢 𝑗 ∈ 𝑅 ∩ 𝑆 s.t. 𝑑𝑖𝑠𝐺 (𝑣,𝑢 𝑗) < ℎ − 𝑠 do
8 if (1 ≪ mod(𝑗, 64)) ∧ Reach[𝑞] [𝑖] [div(𝑗, 64)] = 0 then
9 cnt← cnt + 1;

10 select[𝑢𝑖] ← select[𝑢𝑖] − cnt;
11 𝑑ℎ𝑢𝑖 (𝐺 (𝑉 \ {𝑣 })) ← select[𝑢𝑖]/rate[𝑢𝑖];
12 return 𝑑ℎ𝑢𝑖 (𝐺 (𝑉 \ {𝑣 })) for each vertex 𝑢𝑖 ∈ 𝑁ℎ

𝑣 ;

In Algorithm 6, it first initializes the bitmap structures for the

vertices in 𝑁ℎ
𝑣 (lines 1-2 of Algorithm 6). Let 𝑆 be the set of sampled

vertices. Then, the algorithm computes the bitmaps for the vertices
in 𝑁ℎ−1

𝑣 ∩𝑆 (lines 2-3). Note that for the vertices in 𝑁ℎ
𝑣 \𝑁ℎ−1

𝑣 , their

ℎ-hop degrees decrease by 1 after deleting 𝑣 , thus we do not need

to maintain the bitmaps for those vertices. Subsequently, for each
𝑢𝑖 ∈ 𝑁ℎ

𝑣 , the algorithm updates the ℎ-hop degree of 𝑢𝑖 based on the

sampled vertices (lines 4-11). Notice that it first updates select[𝑢𝑖],
and then uses select[𝑢𝑖]/rate[𝑢𝑖] as an estimator for the updated

𝑑ℎ𝑢𝑖 (lines 10-11).

Complexity analysis. We first analyze the time complexity of

Algorithm 6. Compared to Algorithm 4, Algorithm 6 only need

to maintain the bitmaps for the sampled vertices 𝑁ℎ−1

𝑣 ∩ 𝑆 . The
cardinality of the set 𝑁ℎ−1

𝑣 ∩ 𝑆 can be bounded by𝑂 (𝑟𝑑ℎ𝑣) ≤ 𝑂 (𝑟�̃�).
Similar to Algorithm 4, we can easily derive that the time complexity

of Algorithm 6 is 𝑂 (𝑟�̃�2 + ℎ𝑟�̃��̃�/64), where 𝑟 < 1 is sampling rate.

Based on this, the time complexity of Algorithm 5 is 𝑂 (𝑟𝑛�̃�2 +
ℎ𝑟𝑛�̃��̃�/64), which is lower than our exact algorithm by a factor 𝑟 .

For example, if 𝑟 = 0.1, the sampling-based algorithm can be one

order of magnitude faster than the proposed exact algorithm, as

confirmed in our experiment. For the space usage, we can easily

derive that the complexity of the sampling-based algorithm is the

same as that of the exact algorithm.

4.4 Parallelization
In this section, we explore how Algorithm 2 splits the computation

in several sub-tasks which can be processed independently. Note

that the parallelization strategy for Algorithm 2 and Algorithm 5 is

the same. Therefore, we focus mainly on developing parallelization

strategy for Algorithm 2.

First, in lines 1-2 of Algorithm 2, we can compute the ℎ-hop de-

gree for each vertex in parallel, because the sub-tasks for computing

ℎ-hop degrees are clearly independent. Second, when deleting the

vertices in the bucket 𝐵 (line 6 of Algorithm 2), we can also process

the vertices in parallel. However, the sub-task for deleting a vertex

is not independent, but it depends on the former deleted vertices.

To make all the sub-tasks independent, we can follow an increasing

order by vertex ID to delete vertex. When processing a vertex 𝑣𝑖 , we

use a thread to update the ℎ-hop degrees of the vertices in 𝑁ℎ
𝑣𝑖
that

either has a ℎ-hop degree no less than 𝑑ℎ𝑣𝑖 or has a larger vertex ID.

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

317

Based on this strategy, the sub-tasks for removing the vertices in

the bucket 𝐵 are independent, and therefore we can safely process

the vertices in 𝐵 in parallel. Note that in Algorithm 4, the procedure

of updating the ℎ-hop degree of a vertex should be considered as

an atomic operator (line 15 and line 18). In our experiments, we

will show that the proposed parallel algorithms can achieve a very

good speedup ratio over the corresponding sequential algorithms.

5 EXPERIMENTS
In this section, we conduct extensive experiments to evaluate the

efficiency and scalability of the proposed algorithms. Below, we

first describe the experimental setup and then report our results.

5.1 Experimental setup
We implement three sequential algorithms to compute the (𝑘, ℎ)-
core decomposition: KHC, KHCS, and h-LB+UB. The KHC and

KHCS are our exact and sampling-based (𝑘, ℎ)-core decomposition

algorithms respectively. Both KHC and KHCS are integrated with

the bitmap technique proposed in Section 4.2. The h-LB+UB algo-

rithm denotes the state-of-the-art ℎ-LB+UB algorithm [10], which

is served as a baseline in our experiments. For all these algorithms,

we also implement the parallelized versions using OpenMP. All

algorithms are implemented in C++. We conduct all experiments

on a PC with two 2.3 GHz Xeon CPUs (16 cores in total) and 64GB

memory running Ubuntu 16.4.

Datasets. We make use of 12 real-world datasets in our experi-

ments. Table 1 shows the detailed statistics of the datasets, where

𝑑max, Δ and 𝑘max denote the maximum degree, the diameter and

the maximum 𝑘-core number of the network. ca-AstroPH (ca-As for
short) is a collaboration network; com-amazon (Amazon) is a co-
purchasing network; Douban, Hyves, soc-LiveJournal (SocLJ), soc-
youtube (Socytb), soc-pokec (Pokec), and soc-Epinions (SocEps)
are social networks; flickrEdges (Flickr) is a network of Flickr im-

ages sharing common metadata such as tags, groups, locations etc;

bio-CE-CX (BioCE) and bio-WormNet-v3 are biological networks;
italycnr-2000 (Cnr2000) is a web graph. All datasets can be down-

loaded from http://networkrepository.com and http://snap.stanford.

edu/data.

Parameters. Both KHC and h-LB+UB have only one parameter

ℎ ∈ N+, and the KHCS algorithm has an additional parameter 𝑟

which denotes the sampling rate. In our experiment, the parameter

ℎ is selected from the interval [2, 5] (the same parameter setting

also used in [10]), because larger values are often not interesting

in practice [10]. For KHCS, the parameter 𝑟 is selected from the

interval [0.05, 0.8] with a default value of 𝑟 = 0.1, because KHCS
performs very well on all datasets given that 𝑟 = 0.1.

5.2 Experimental results

Exp-1: Efficiency of various sequential algorithms. We start by

comparing the efficiency of different sequential algorithms. Fig. 2

shows the runtime of h-LB+UB, KHC, and KHCS on all datasets.

Note that in all experiments, INF means that the algorithm does

not terminate in 28 hours. From Fig. 2(a), we observe that KHC
and KHCS significantly outperform the state-of-the-art h-LB+UB
algorithm on most datasets with ℎ = 2. We also notice that on

some very sparse graphs, such as Amazon and Hyves, h-LB+UB

Table 1: Datasets

Dataset |𝑉 | |𝐸 | 𝑑max Δ 𝑘max

BioCE 15,229 245,952 375 13 78

BioWorm 16,347 762,822 1,272 12 164

ca-As 18,771 198,050 504 14 56

SocEps 75,880 405,740 3,044 15 67

Flickr 105,939 2,316,948 5,425 9 573

Douban 154,908 327,162 287 9 15

Cnr2000 325,557 2,738,969 18,236 34 83

Amazon 334,863 925,872 549 44 6

Socytb 495,957 1,936,748 25,409 21 49

Hyves 1,402,673 2,777,419 31,883 10 39

Pokec 1,632,803 22,301,964 14,854 14 47

SocLJ 4,846,609 42,851,237 20,333 16 372

is faster than KHC and KHCS. This is because, on very sparse

graphs, the costs for recomputing the ℎ-hop degrees are very low

with ℎ = 2. However, when ℎ ≥ 3 (Figs. 2(b-d)), we can clearly

see that KHC and KHCS are substantially faster than h-LB+UB on

all datasets. For example, on BioCE, KHC is at least one order of

magnitude faster than h-LB+UB with ℎ ≥ 3. On larger datasets,

such as Pokec (more than 1.6 million vertices and 22 million edges),

h-LB+UB cannot terminate within 28 hours when ℎ = 3, while

KHC takes around 52,000 seconds to compute all (𝑘, ℎ)-cores. When

comparing KHCwith KHCS, we find that KHCS (with the sampling

rate 𝑟 = 0.1) is much more efficient than KHC given that ℎ ≥ 3.

On some large graphs, KHCS is one order of magnitude faster than

KHC when ℎ ≥ 3. For instance, on Pokec, KHCS takes around

2,000 seconds to compute all (𝑘, ℎ)-cores when ℎ = 3, whereas the

time overhead of KHC is around 52,000 seconds. In addition, when

ℎ = 5 (Fig. 2(d)), h-LB+UB cannot handle four medium-sized graphs,

while our algorithms still work well on all eight medium-sized

graphs. These results are consistent with our theoretical analysis

in Section 4.

Exp-2: Efficiency of different parallel algorithms. Here we

evaluate the performance of the parallelized versions of h-LB+UB,
KHC, and KHCS. To this end, we vary the number of threads 𝑡

from 1 to 16 with different ℎ values. Fig. 3 shows the results on

the Flickr dataset, and similar results can also be observed on the

other datasets. As expected, the runtime of all the three algorithms

decreases with increasing 𝑡 . We also observe that if 𝑡 ≥ 8, the

speedup ratios of all algorithms do not significantly increase as 𝑡

grows. This is because, for all algorithms, the parallel performance

mainly relies on the size of the bucket 𝐵 that maintains all the

vertices having the minimum ℎ-hop degrees. In some iterations of

each algorithm, the size of the bucket 𝐵 might be smaller than 𝑡

which limits the parallel speedup ratio of the algorithm. In addition,

we also notice that the speedup ratio ofKHCS is significantly higher
than those of h-LB+UB and KHC. For example, when ℎ = 3, the

parallel KHCS algorithmwith 𝑡 = 16 can achieve nearly 9× speedup
over the sequential KHCS algorithm on Flickr (Fig. 3(b)). However,
the speedup ratios of the parallel h-LB+UB and KHC algorithms

are around 6.6 and 5.3 on Flickr respectively, given 𝑡 = 16 and ℎ = 3.

Exp-3: Runtime of KHCS with varying 𝑟 .We evaluate the run-

time of KHCS with varying 𝑟 (sampling rate). Fig. 4 depicts the

runtime of (parallel) KHCS when 𝑟 varies from 0.05 to 0.8. As ex-

pected, the runtime of KHCS increases when 𝑟 increases, because

the graph is sparser with a smaller 𝑟 value. In addition, we also

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

318

http://networkrepository.com
http://snap.stanford.edu/data
http://snap.stanford.edu/data

0.1

1

10

100

1K

10K

BioCE
BioWorm

ca-As
SocEps

Flickr
Douban

Cnr2000

Amazon

Socytb
Hyves

Pokec
SocLJ

T
im

e
(s

ec
)

h-LB+UB KHC KHCS

(a) ℎ = 2

1

10

100

1K

10K

INF

BioCE
BioWorm

ca-As
SocEps

Flickr
Douban

Cnr2000

Amazon

Socytb
Hyves

Pokec
SocLJ

T
im

e
(s

ec
)

h-LB+UB KHC KHCS

(b) ℎ = 3

10

100

1K

10K

INF

BioCE
BioWorm

ca-As
SocEps

Flickr
Douban

Cnr2000

Amazon

Socytb
Hyves

Pokec
SocLJ

T
im

e
(s

ec
)

h-LB+UB KHC KHCS

(c) ℎ = 4

10

100

1K

10K

INF

BioCE
BioWorm

ca-As
SocEps

Flickr
Douban

Cnr2000

Amazon

Socytb
Hyves

Pokec
SocLJ

T
im

e
(s

ec
)

h-LB+UB KHC KHCS

(d) ℎ = 5

Figure 2: Runtime of different sequential algorithms on all datasets

 0

 20

 40

 60

 80

 100

 1 4 8 12 16

T
im

e
(s

ec
)

Flickr (vary t)

h-LB+UB
KHC

KHCS

(a) ℎ = 2

10

100

1K

10K

100K

 1 4 8 12 16

T
im

e
(s

ec
)

Flickr (vary t)

h-LB+UB
KHC

KHCS

(b) ℎ = 3

100

1K

10K

100K

INF

 1 4 8 12 16

T
im

e
(s

ec
)

Flickr (vary t)

h-LB+UB
KHC

KHCS

(c) ℎ = 4

100

1K

10K

100K

INF

 1 4 8 12 16

T
im

e
(s

ec
)

Flickr (vary t)

h-LB+UB
KHC

KHCS

(d) ℎ = 5

Figure 3: Runtime of different parallel algorithms

observe that KHCS can always achieve high speedup ratios at dif-

ferent sampling rates. For example, when ℎ = 3 and 𝑟 = 0.2, KHCS
takes 453 seconds to compute all (𝑘, ℎ)-cores using a single thread,

while it only takes 83 seconds and 65 seconds using 8 and 16 threads,

respectively. These results further confirm the high efficiency of

our parallel KHCS algorithm.

Exp-4: Precisions of KHCS with varying 𝑟 . In this experiment,

we evaluate the precision of the KHCS algorithm with various sam-

pling rates. Here we define the precision as follows. Let coreℎ [𝑣]
and ĉoreℎ [𝑣] be the exact and the estimated (𝑘, ℎ)-core number

of the vertex 𝑣 , respectively. Then, the precision of an algorithm

is computed by 1 − (∑𝑣∈𝑉 (|coreℎ [𝑣] − ĉoreℎ [𝑣] |)/coreℎ [𝑣])/|𝑉 |.
Fig. 5 shows the precisions of KHCSwith varying 𝑟 on five datasets.

Similar results can also be observed on the other datasets. As ex-

pected, the precisions of KHCS typically increase as 𝑟 increases.

When ℎ = 2 (Fig. 5(a)), the precisions of KHCS are no less than 92%

on all datasets even when 𝑟 = 0.05. Moreover, with 𝑟 increases, the

 0

 10

 20

 30

 40

 50

 60

 0.1 0.2 0.4 0.6 0.8

T
im

e
(s

ec
)

Cnr2000 (vary r)

t=1
t=8

t=16

(a) ℎ = 2

 0

 400

 800

1.2K

1.6K

 0.1 0.2 0.4 0.6 0.8

T
im

e
(s

ec
)

Cnr2000 (vary r)

t=1
t=8

t=16

(b) ℎ = 3

 0

1K

2K

3K

4K

5K

 0.1 0.2 0.4 0.6 0.8

T
im

e
(s

ec
)

Cnr2000 (vary r)

t=1
t=8

t=16

(c) ℎ = 4

 0

5K

10K

15K

20K

25K

 0.1 0.2 0.4 0.6 0.8

T
im

e
(s

ec
)

Cnr2000 (vary r)

t=1
t=8

t=16

(d) ℎ = 5

Figure 4: Runtime of the KHCS algorithm

precisions can be quickly improved to 98% on all datasets given

that ℎ = 2. When ℎ ≥ 3 (Fig. 5(b-d)), KHCS exhibits very high pre-

cisions (≥ 99%) in most cases. For example, even when 𝑟 = 0.05, the

precision of KHCS is higher than 99% with ℎ ≥ 4 on most datasets.

These results indicate that KHCS is very accurate in practice even

for a very small sampling rate (e.g., 𝑟 = 0.1).

Exp-5: Memory overhead. We compare the memory overhead of

different algorithms. Fig. 6 shows the results on Flickr and Cnr2000,
and similar results can also be obtained on the other datasets. As

expected, the memory overheads of KHC and KHCS are slightly

higher than that of the h-LB+UB algorithm, because our algorithms

need to maintain a Reach data structure (the bitmaps for all ver-
tices). Specifically, we can see that the memory usage of h-LB+UB
is less than twice of the graph size. The memory overhead of KHC
and KHCS are comparable, both of which are less than 4 times of

the graph size. These results indicate that our algorithms (with

the bitmap optimization technique) are space efficient for handling

real-world graphs.

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

319

 90

 92

 94

 96

 98

 100

 0.1 0.2 0.4 0.6 0.8

P
re

ci
si

o
n

 (
%

)

r

BioWorm
ca-As

SocEps
Flickr

Cnr2000

(a) ℎ = 2

 95

 96

 97

 98

 99

 100

 0.1 0.2 0.4 0.6 0.8

P
re

ci
si

o
n

 (
%

)

r

BioWorm
ca-As

SocEps
Flickr

Cnr2000

(b) ℎ = 3

 97

 98

 99

 100

 0.1 0.2 0.4 0.6 0.8

P
re

ci
si

o
n

 (
%

)

r

BioWorm
ca-As

SocEps
Flickr

Cnr2000

(c) ℎ = 4

 98

 98.4

 98.8

 99.2

 99.6

 100

 0.1 0.2 0.4 0.6 0.8

P
re

ci
si

o
n

 (
%

)

r

BioWorm
ca-As

SocEps
Flickr

Cnr2000

(d) ℎ = 5

Figure 5: Precisions of KHCS with varying 𝑟

 0

 20

 40

 60

 80

 100

 120

 140

 2 3 4 5

M
em

o
ry

 (
M

)

h

Graph size
h-LB+UB

KHC

(a) Flickr

 0

 20

 40

 60

 80

 100

 2 3 4 5

M
em

o
ry

 (
M

)

h

Graph size
h-LB+UB

KHC

(b) Cnr2000

Figure 6: Memory overheads of various algorithms

Exp-6: Scalability. Here we aim at evaluating the scalability of

h-LB+UB, KHC and KHCS, using 16 threads. To this end, we first

generate eight subgraphs by randomly sampling 20-80% of vertices

and edges from the original graph respectively. Then, we evaluate

the runtime of all algorithms on these subgraphs using 16 threads.

The results on Pokec with ℎ = 2 and ℎ = 3 are shown in Fig. 7,

and the results on the other datasets and for the other ℎ values are

consistent. From Fig. 7, we observe that the time costs of KHC and

KHCS increase smoothly as |𝑉 | or |𝐸 | increases. The runtime of

h-LB+UB, however, increases sharply with increasing |𝑉 | or |𝐸 |.
Moreover, both KHC and KHCS significantly outperform h-LB+UB
under all parameter settings. These results suggest that both KHC
and KHCS exhibit a good scalability, while h-LB+UB shows a poor

scalability when ℎ ≥ 3.

6 RELATEDWORK
𝐾-core based models and algorithms. The 𝑘-core model was

originally proposed by Seidman [28] for modeling cohesive sub-

graphs in an undirected network. Recently, many 𝑘-core based

models have been proposed for modeling cohesive subgraphs on

different types of networks. For example, Batagelj and Zaversnik [7]

introduced a generalized concept of 𝑘-core by considering weights

of the edges on weighted graphs. Bonchi et al. [9] proposed a 𝑘-core

model for uncertain graphs based on a definition of reliable degree
of nodes. Li et al. [22] proposed an influential community model

based on 𝑘-core to capture both the influence and cohesiveness of

a community. Galimberti et al. proposed two generalized 𝑘-core

models for multi-layer networks [18] and temporal graphs [17], re-

spectively. Fang et al. [16] extended the 𝑘-core concept to attribute

graphs. More recently, Li et al. [21] proposed a skyline 𝑘-core model

for modeling communities on multi-valued networks. From the al-

gorithmic point of view, Batagelj and Zaversnik [6] proposed a

linear-time core decomposition algorithm. Sariyüce et al. [25] and

Li et al. [23] developed efficient algorithms for maintaining the core

 0

 100

 200

 300

 400

 500

 600

 700

20% 40% 60% 80% 100%

T
im

e
(s

ec
)

Vary |V|

h-LB+UB
KHC

(a) ℎ = 2

 0

 100

 200

 300

 400

 500

 600

 700

20% 40% 60% 80% 100%

T
im

e
(s

ec
)

Vary |E|

h-LB+UB
KHC

(b) ℎ = 2

1

10

100

1K

10K

INF

20% 40% 60% 80% 100%

T
im

e
(s

ec
)

Vary |V|

h-LB+UB
KHC

(c) ℎ = 3

1

10

100

1K

10K

INF

20% 40% 60% 80% 100%

T
im

e
(s

ec
)

Vary |E|

h-LB+UB
KHC

(d) ℎ = 3

Figure 7: Scalability testing on the Pokec dataset (16 threads)

decomposition on dynamic graphs. Wen et al. [33] presented an

I/O efficient core decomposition algorithm for web scale graphs.

Unlike all these existing studies, we focus on developing efficient

algorithms to solve the distance-generalized core decomposition

problem, which was originally introduced in [10].

Other cohesive subgraphmodels. Beyond 𝑘-core, there also exist
many other cohesive subgraph models which have been widely

used for modeling communities. Notable examples include the max-

imal clique model [11, 12], the 𝑘-plex model [8, 29], the 𝑘-truss

model [13, 20, 32], the nucleus model [26, 27], the locally densest

subgraph (LDS) model [15, 24, 31], as well as the maximal 𝑘-edge

connected subgraph (𝑘-ECS) model [1, 35]. Noted that the problems

of enumerating all maximal cliques and all 𝑘-plex subgraphs are

NP-hard [8, 11], thus they are often intractable for massive graphs.

However, for the 𝑘-truss, the nucleus, the LDS, the 𝑘-ECS models,

there exist polynomial-time algorithms to compute the correspond-

ing cohesive subgraphs. Similar to these cohesive subgraph models,

the (𝑘, ℎ)-core model studied in the paper can also be computed in

polynomial time [10].

7 CONCLUSION
In this paper, we propose an efficient peeling algorithm to compute

the (𝑘, ℎ)-core decomposition on graphs based on a novel ℎ-hop

degree updating technique. The striking feature of our algorithm is

that it only needs to traverse a small induced subgraph (𝐺 (𝑁ℎ
𝑣)) to

maintain the ℎ-hop degrees for all vertices after peeling a vertex 𝑣 ,

instead of recomputing the ℎ-hop degrees of the vertices. We also

develop an elegant bitmap technique to efficiently implement such

an ℎ-hop degree updating procedure. Additionally, we present a

sampling-based algorithm and a parallelization strategy to further

improve the efficiency for (𝑘, ℎ)-core decomposition. The results of

extensive experiments on 12 real-world large graphs demonstrate

the efficiency and scalability of the proposed algorithms.

8 ACKNOWLEDGMENTS
This work was partially supported by (i) National Key Research and

Development Program of China 2020AAA0108503, (ii) NSFC Grants

62072034 and 61772346, (iii) ARC FT200100787 and DP210101347,

and (iv) CCF-Baidu Open Fund. Rong-Hua Li is the corresponding

author of this paper.

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

320

REFERENCES
[1] Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. 2013. Linear-time enumeration of

maximal K-edge-connected subgraphs in large networks by random contraction.

In CIKM. 909–918.

[2] Md Altaf-Ul-Amine, Kensaku Nishikata, Toshihiro Korna, Teppei Miyasato, Yoko

Shinbo, Md Arifuzzaman, Chieko Wada, Maki Maeda, Taku Oshima, Hirotada

Mori, et al. 2003. Prediction of protein functions based on k-cores of protein-

protein interaction networks and amino acid sequences. Genome Informatics 14
(2003), 498–499.

[3] J. Ignacio Alvarez-Hamelin, Luca Dall’Asta, Alain Barrat, and Alessandro Vespig-

nani. 2005. Large scale networks fingerprinting and visualization using the k-core

decomposition. In NIPS. 41–50.
[4] Gary D. Bader and Christopher W. V. Hogue. 2003. An automated method

for finding molecular complexes in large protein interaction networks. BMC
Bioinformatics 4 (2003), 2.

[5] Balabhaskar Balasundaram, Sergiy Butenko, and Illya V. Hicks. 2011. Clique Re-

laxations in Social Network Analysis: The Maximum k-Plex Problem. Operations
Research 59, 1 (2011), 133–142.

[6] Vladimir Batagelj and Matjaz Zaversnik. 2003. An O(m) Algorithm for Cores

Decomposition of Networks. CoRR cs.DS/0310049 (2003).

[7] Vladimir Batagelj and Matjaz Zaversnik. 2011. Fast algorithms for determining

(generalized) core groups in social networks. Adv. Data Analysis and Classification
5, 2 (2011), 129–145.

[8] Devora Berlowitz, Sara Cohen, and Benny Kimelfeld. 2015. Efficient Enumeration

of Maximal k-Plexes. In SIGMOD. 431–444.
[9] Francesco Bonchi, Francesco Gullo, Andreas Kaltenbrunner, and Yana Volkovich.

2014. Core decomposition of uncertain graphs. In KDD. 1316–1325.
[10] Francesco Bonchi, Arijit Khan, and Lorenzo Severini. 2019. Distance-generalized

Core Decomposition. In SIGMOD. 1006–1023.
[11] Coenraad Bron and Joep Kerbosch. 1973. Finding All Cliques of an Undirected

Graph (Algorithm 457). Commun. ACM 16, 9 (1973), 575–576.

[12] James Cheng, Yiping Ke, Ada Wai-Chee Fu, Jeffrey Xu Yu, and Linhong Zhu. 2011.

Finding maximal cliques in massive networks. ACM Trans. Database Syst. 36, 4
(2011), 21:1–21:34.

[13] Jonathan Cohen. 2005. Trusses: Cohesive subgraphs for social network analysis.

Technical report, National Security Agency (2005).

[14] Wanyun Cui, Yanghua Xiao, Haixun Wang, and Wei Wang. 2014. Local search of

communities in large graphs. In SIGMOD. 991–1002.
[15] Maximilien Danisch, T.-H. Hubert Chan, and Mauro Sozio. 2017. Large Scale

Density-friendly Graph Decomposition via Convex Programming. InWWW.

[16] Yixiang Fang, Reynold Cheng, Siqiang Luo, and Jiafeng Hu. 2016. Effective

Community Search for Large Attributed Graphs. PVLDB 9, 12 (2016), 1233–1244.

[17] Edoardo Galimberti, Alain Barrat, Francesco Bonchi, Ciro Cattuto, and Francesco

Gullo. 2018. Mining (maximal) Span-cores from Temporal Networks. In CIKM.

[18] Edoardo Galimberti, Francesco Bonchi, and Francesco Gullo. 2017. Core Decom-

position and Densest Subgraph in Multilayer Networks. In CIKM. 1807–1816.

[19] Christos Giatsidis, Dimitrios M. Thilikos, and Michalis Vazirgiannis. 2011. Eval-

uating Cooperation in Communities with the k-Core Structure. In ASONAM.

87–93.

[20] Xin Huang, Hong Cheng, Lu Qin, Wentao Tian, and Jeffrey Xu Yu. 2014. Querying

k-truss community in large and dynamic graphs. SIGMOD (2014), 1311–1322.

[21] Rong-Hua Li, Lu Qin, Fanghua Ye, Jeffrey Xu Yu, Xiaokui Xiao, Nong Xiao, and

Zibin Zheng. 2018. Skyline Community Search in Multi-valued Networks. In

SIGMOD.
[22] Rong-Hua Li, Lu Qin, Jeffrey Xu Yu, and Rui Mao. 2015. Influential Community

Search in Large Networks. PVLDB 8, 5 (2015), 509–520.

[23] Rong-Hua Li, Jeffrey Xu Yu, and Rui Mao. 2014. Efficient Core Maintenance in

Large Dynamic Graphs. IEEE Trans. Knowl. Data Eng. 26, 10 (2014), 2453–2465.
[24] Lu Qin, Rong-Hua Li, Lijun Chang, and Chengqi Zhang. 2015. Locally Densest

Subgraph Discovery. In KDD. 965–974.
[25] Ahmet Erdem Sariyüce, Bugra Gedik, Gabriela Jacques-Silva, Kun-Lung Wu,

and Ümit V. Çatalyürek. 2013. Streaming Algorithms for k-core Decomposition.

PVLDB 6, 6 (2013), 433–444.

[26] Ahmet Erdem Sariyüce, C. Seshadhri, Ali Pinar, and Ümit V. Çatalyürek. 2015.

Finding the Hierarchy of Dense Subgraphs using Nucleus Decompositions. In

WWW.

[27] Ahmet Erdem Sariyüce, C. Seshadhri, Ali Pinar, and Ümit V. Çatalyürek. 2017.

Nucleus Decompositions for Identifying Hierarchy of Dense Subgraphs. TWEB
11, 3 (2017), 16:1–16:27.

[28] Stephen B. Seidman. 1983. Network structure and minimum degree. Social
Networks 5, 3 (1983), 269–287.

[29] Stephen B. Seidman and Brian L. Foster. 1978. A graph-theoretic generalization

of the clique concept. Journal of Mathematical Sociology 6, 1 (1978), 139–154.

[30] Carmi Shai, Havlin Shlomo, Kirkpatrick Scott, Shavitt Yuval, and Shir Eran. 2007.

A model of Internet topology using k-shell decomposition. PNAS 104, 27 (2007),
11150–11154.

[31] Nikolaj Tatti and Aristides Gionis. 2015. Density-friendly Graph Decomposition.

In WWW.

[32] Jia Wang and James Cheng. 2012. Truss Decomposition in Massive Networks.

PVLDB 5, 9 (2012), 812–823.

[33] DongWen, Lu Qin, Ying Zhang, Xuemin Lin, and Jeffrey Xu Yu. 2016. I/O efficient

Core Graph Decomposition at web scale. In ICDE. 133–144.
[34] Yang Zhang and Srinivasan Parthasarathy. 2012. Extracting Analyzing and

Visualizing Triangle K-Core Motifs within Networks. In ICDE. 1049–1060.
[35] Rui Zhou, Chengfei Liu, Jeffrey Xu Yu, Weifa Liang, Baichen Chen, and Jianxin

Li. 2012. Finding maximal k-edge-connected subgraphs from a large graph. In

EDBT. 480–491.

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

321

	Abstract
	1 Introduction
	2 Problem Statement
	3 Existing Solutions
	4 The proposed algorithms
	4.1 The basic h-hop degree updating algorithm
	4.2 A bitmap optimization
	4.3 A sampling-based algorithm
	4.4 Parallelization

	5 Experiments
	5.1 Experimental setup
	5.2 Experimental results

	6 Related work
	7 Conclusion
	8 Acknowledgments
	References

